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Georgii Vladimirovich Kamenkov concerned himself with difficult and fundamental 

probIems of aerodynamics, theory of stability of motion, and the theory of nonlinear 

vibrations, 

1. Aerodyn!mics. Kamenkov’s first paper on aerodynamics [l] dealt with the 

stability of von Karmin vortex streets. His earliest papers in this field are related to 

the studies of von K&m& and Zhukovskii, In his fundamental paper on the action of 

a plane-parallel fluid layer on a cylindrical body, T. von K&m&r , originator of the 

vortex theory of drag, proposed that drag be computed on the basis of the momentum 

imparted by the body to vortex filaments. A basic problem in this theory was that of 

the stability of vortex street centers. Von K&m&r derived the following relationship 

between the width b of the vortex street and the distance 1 between the vortices : 

cash (i-rb /a) = J2 

which was supposed to guarantee the stability of the vortex street. 

But Zhukovskii, proceeding from other assumptions about the displacement of the 

vortex centers, obtained a different formula 

cash (TTb /R) =J3 

It was this contradiction which G. V. Kamenkov dealt with in his paper. He showed 

that the disagreement of the von K&m&r and Zhukovskii stability conditions was due to 

the fact that they applied to different physical problems. He discovered that the stabi- 

lity conditions obtained by von K&man and Zhukovskii were incorrect in both cases, 

since they were based on equations of perturbed motion taken in only the first approxi- 

mation. 

In his paper Kamenkov showed that more careful consideration of the problem with 

due allowance for the effect of higher-order terms indicates that vortex streets are not 

stable in the infinitesimal for any relationship between b and A, 

Kamenkov’s paper r2] contains an original investigation of the unsteady motions of an 

airplane wing. The problem was first solved by Chaplygin for an infinite wingspan with 

the assumption of a constant circulation integral over the wing contour. Moreover, in 

constructing the flow past the wing he assumed the vibrational periods to be small enough 

to enable him to neglect variations in the circulation integral due to wing vibrations. 

In this paper Kamenkov established structural formulas for the resultant and for the 

moment of air pressure acting on a wing in unsteady motion with variable circulation. 

Replacing the profile by a system of vortices situated along its midline, Kamenkov 

obtained a Fredholm equation of the first kind for determining the circulation. For the 

case where the midline of the profile can be represented by an analytic function Y(X), 
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he solved rhe resulting integral equation in trigonomenic series form. 

The fundamental studies carried out by Kamenkov in t!lc? field of wing rheory in the 

rranscritical domain are presented in 1’71. 4s WC know, the circillation theory of rhe 

wing, originated by N, I:, Zhukovskii. enables one to determine a wing’s lift with suf- 

ficient accuracy only for very small angles of attack not exceeding the crirical angle. 

The picttire of fluid motion in the transcritical domain is quite distinct from that in 

the subcritical range : the flow past the wing ceases to be irrotational: a region filled 

with vortices is formed behind the wing, as a result of which the motion becomes RR- 

steady. 

Kamenkov solved the problem by assuming that the motion behind the body correspon- 

ded to the flow pattern described by van Kirmin and obtained an equation for the drag 

valid for all values of b and 1 (the meaning of these quantities is the same as in Cl]), 

which are wholly unrelated to the aforementioned relations of von K&r& In order to 

determine the required relationship between b and 2 9 Kamenkov made use of the 

least-energy-change criterion which in the problem about the uniform motion of a solid 

through a fluid can be replaced by the criterion of extremal drag Qk. This relation- 

ship between b and J? , as well as between b and the circulation integral over the 

contour encompassing one vortex street can be obtained by solving Equations 

f?Q,, "Q?< __ ~b = -;;j- = If 

Kamenkov’s subsequent reasoning is based on the assumption that the circulation lost 

by the wing over the time T is equal to the circulation of a single vortex. The excel- 

lent agreement of his theoretical results with the large body of experimental material 

cited in the paper confirmed the validity of &is assumption concerning the circulation 

1OSS. 

In conclusion, Kamenkov presented general formulas for determining the coefficients 

of the aerodynamic forces as functions of the Strouhal number and extended his theory 

to a wing of finite span. 

2. Stability of motfon. Kamenkov’s papers on the stability of motion can 

he placed under three headings : stability in critical cases, stability of motion over 

finite time periods, and stability of motion in near-critical cases. 

1”. The problem of the stability of motion was posed with utmost generality by 

Liapunov in his doctoral thesis “The General Problem of the Stability of Motion’[1892). 

With maximum rigor Liapunov indicated the cases in which the first approximation 

does, in fact, resolve the question of stability and isolated the so-called special or crit- 

ical cases of the stability problem which require consideration of the linear terms in the 

right sides of the differential equations of perturbed motion. 

Assigning particular significance to the investigation of special cases of the problem 

of stability of motion, Liapunov noted that “in each of them the problem assumes a 

distinctive character, so rhat there can be no thought of any geceral methods for its 

solution which would apply to all such cases”. 

In his thesis Liapunov considered the simplest of the special cases : that of a single 

zero root and a pair of purely imaginary roots for the steady motion, and the case of 

one root equal to unity and two conjugate imaginaty roars !‘iOiN u- equal to unity in abso- 

lute value for systems with periodic coefficients with the period a , assuming that 

AU/T7 is an incommensurable number. Somewhat later i,iapunov considered the case 
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of two zero roots with one group of solutions . 

Kamenkov’s earliest papers on the stability of motion were a development of the the- 

ory of stability of motion in special cases, 

In [3] he solved the problem of the srahility of the inregrals of a system of differential 

equations of the form Z’ L= s (2, y), ?/ . = 1’ (a, ?I) if, 

y (x,y) Z y(mj (2., y) -1. yw-*) (T 7,) i_ 
7. , **. 

are analytic functions of X and ,U which vanish for XL ,$/ = 0 . 
We proved the following theorems, 

Theorem 1. If the differential equations of perturbed motion of form (1) satisfy 

the conditions that 

1) the function P (x, ?/) = Z-Y!@ - y&m) is alternating in the Liapnnov sense t 

2) the function Xfm)/x can be made positive provided that F( X, @) = 0, then 

the unperturbed motion is unstable. 

Theorem 2. If the differential equations (1) are such that 

1) F (5, y) = zY(‘*) - ~J.X(~‘) is an alternating function : 
2) LPJ/ 2 < 0, lv(mil y < 0 for F( X, @ ) = 0 ; 

3) .x@)=o, Y(m)= 0 do not have common branches passing through the origin : 
3) at least one of the Equatians 

ax(nL’ iw@ f3X(m) dY(m) 
~-z--x-= dX 

6Y(m', - 
y ay ‘-“-x~ z &r(m) 

is not valid if F( X , @) = 0 for all Ue 1 , then the unperturbed motion is 

asymptotically stable. 

Theorem 3. If F (2, y) = zYfrnf - r&P) i s an alternating function and if 

I = F (cm 8, sin 6) s .x(@ cm 8 f Y(m) sin 0 
F (~0s e, sin 0) de>0 

II 
(2) 

then the motion is unstable. If I< 0 , it is asymptotically stable. 

If I= 0 , then the forms XC@ and Ycr”) do not solve the problem of stability. 

In the forms Xc”‘, Y(“‘) and F appearing in (2) the variables X and 5/ have been 

replaced by cos 8 and sin 0 t respectively . 

For alternating B and I- 0 the problem is solved by means of norms of higher order 

than &ri’) and ji(l)k). 

In (4) Kamenkov solved the problem of the stability of the integrals of the system 

under the familiar assumptions about the right sides, This problem was solved by Liapu- 

nov in the case of no adjoint system in his paper “Investigation of one of the special 

cases of the motion stability problem” (1893, Matem. Sb. , No. 2, pp. 253-333). The 

same problem in the presence of an adjoint system was likewise solved by Liapunov, but 

came to light and was published only in 1963. Not knowing about Liapunov’s solution, 

Kamenkov used another approach to investigate the problem of stability in the case of 

two zero roots with one group of solutions with an adjoint system. In this paper Kamenkov 

made wide use of Chetaev’s well-known theorem to prove his own theorems, which 
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greatly simplified handling of rhe problem. 

After separating the critical and noncritical variables Kamenkov constrtlcted the Lia- 

punov and Chetaev functions for the complete system as sum$ or twc fLlnc*tion\, 

1’ (T! ?/, .Tl, . . . . rrnf : I’, (5, !I) + I’? (2,. . . . . r,,j 

Were V,( x, $4) is the [,iapunov or (Ihetaev function fur the r.ritical syqrem, and 

&AX, I..., X,) is determined by Equation 
II 

The plus or minus sign is taken in accordance with the sign of VI’, 
Thus, in [4] Kamenkov proved the possibility of reducing the problem of the stability 

of an ( ?2+ 2)-th order system to that of a second-order system in nonessentially singular 

cases. 
Paper [S] concerns stability of motion in the special case of two zero roots with two 

groups of solutions in the presence of an adjoint system. 
Kamenkov indicated which transformations might be used ro reduce the investigation 

of the stability of an (72 + 2)-th order system to the equivalenr problem for a second 
order system. This transition from considering the stability of rhe complete sysrem to 

the investigation of the critical system alone later came to be called the “reduction 
principle”. 

After passing to the investigation of the second-order system, Kamenkov proceeded 
to generalize the results of [3]. He proved the general xheorem about stability with 
respect to the forms XCm) and YCm) in the case where F (xc, ?j) = zY(“j - ?/X(“‘) is 

an alternating form. 
Theorem. If 

1) F f& y) = TY (m)- yA?f is a function of either alternating or constant sign; 

2) x(m) i r < 0 Yfl”f/ y < 0 for 
asymptoridally stable. 

_F( X , g) = 0 , then the ~pert~bed morion is 

In his later papers [lo and 121, Kamenkov replaced condition (2) by the equivalent 
condition K, (x, y) = ~2~~) -i- Y,Y(‘~) < 0. 

If the expression J?, ( X , & ) = 0 on at least one of the real straight lines F( X, g) +Z 0, 

then the forms XCm) and Ylrn) do not resolve the question of stability, and one must 
turn to a higher-order form for its resolution. The stability problem in this case becomes 
exceedingly complex. It was only in a much later paper [lOI that Kamenkov succeeded 
in solving it 

The results of papers [3 to S] were already being applied in the Thirties in studies of 
the stability of the lateral and forward motion of aircraft., 

In monograph [6] Kamenkov generalized the results of papers [4 and 51 and first inves- 
tigated stability in the critical cases of one zero and a pair of purely imaginary roats 
and two pairs of purely imaginary roots under the assumption that the purely imaginary 
roots *-LA, , * t k a are such that the sum (m 1 h 1 t m 2 h 2 ) # 0 for any integer 

IIZ, satisfying the condition (ml + m2 ) 2 fl, where fl is the order of forms in the trans- 
formed critical system which resolve the question of stability. The restriction 
(ml +m 0 ) 2 fl does not exclude so-called internal resonance in terms of higher order 

than N, 
Kamenkov showed that the problem of stability in the case of one zero and a pair of 



Survey of papers by G, V. Kamenkov 

purely imaginary roots, as well as that of two purely imaginaty roots can, under this 

condition, be reduced to the problem of stability for two zero roots with two groups oi 
solutions. 

He then considered the general case where the determining equation of the system of 
differential equations of perturbed motion has an n;l-tuple zero root associated with m 

groups of solutions : 2p purely imaginary roots satisfying the condition 

Ti-l,hl -i- . . . + rrl*lbp + 0 (m, -f . + mp < N) 

and Q roots with negative real parts. 1Iere Ins are integers, including zero. 

The next step was to show that this problem can be reduced in nonessentially singular. 

cases to the investigation of the stability of a system with an (m + ,JJ)-tuple zero root 

with ?7? t p qroups of associated solutions. 
He then proved a very important theorem on instability with respect to m-th order 

forms for systems with an n-tuple zero root with 77, associated groups of solutions, 

Theorem , If the system of Equations 

rs’ = X/@ (II,. . ., “,) + Xscm+‘) (IJ,. ., rn) -{- . . (s=l ,.*.,nj 

is such that Equations F,I,. = z~X$(‘~) - r,XkCm) = 0 forany fixed k and S= l,.,., 

k-1, ktl,,.., 72 have real sdlutions different from Xl = X2 = . , . = X, = 0 , 
and if the form 

R == 5 Z&(m) (21,. . . , ZJ for F Sk .= 0 
S=I 

can assume positive values, then the unperturbed motion is unstable. 
To prove this theorem Kamenkov generalized the familiar theorem of Briot and Bou- 

quet for systems of the form 

4fi 
x-z = yi (% !/I,..., 21,,) (i==l,...,T%) (3) 

where & are holomorphic functions of X , yl,. . . , g, which vanish when X = $41 = 

= . . . = & = 0 . He proved that if Eauation 
3Y, 

1 Psk 
- askx 1 = 0 to Psk = -&; 

I 
x=y,=...=yn= 0 

has no positive roots, then there will always be a certain system of holomorphic func- 

tions Yl, . . . , Lb of the variable X which satisfy system (3) and vanish for X = 0 . 
When one is investigating the stability of systems with purely imaginary roots satisfy- 

ing the condition Cm,X, # 0 , Equations $& = 0 always have a nontrivial solution 
and the theorem on instability is especially important for such systems. 

In the fifth and final chapter of his study, Kamenkov investigated those special cases 
of the problem of stability of motion for systems with periodic coefficients which can be 
reduced to the cases already considered, He indicated the transformation which can be 
used to pass from the investigation of periodic stability of motion to the study of stabi- 

lity of equilibrium. 

G. V. Kamenkov’s last papers on the theory of stability in critica cases [lo and 121 
deal with the stability of periodic motions. He considered systems of Equations 

28 .= - ASYS +x, (Xl, .a** “pi ?A, a**, Yp; r), Ys’= h,x, +y, (Z,, *a., ZP; y1, . ..) yp;z) 

(S = l,..., P) 

where x, and u, are holomorphic functions of the variables X1,. , . , xp ; ZJl ,. . . 

,.. , % whose expansion begins with terms of not lower than the second order. The 
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coefficients in the expansions of & and y, are periodic functions with the common 

real period UJ . 

For p = 1 and an irrational A UJ /1T the stability problem bad already been solved 

by Liapunov. In [IO] Kamenkov solved the problem for a rational b/TT . He showed 

that in this case transformations which do not alter the stability problem can be used to 
reduce it to the investigation of the critical case of two zero roots with two groups of 
solutions of the form 

2’ = X(m)@, y) + . . . $ _P + N, (a, y) $ X’m+N+i’ (2, y, t) + . . . 

y’ = Ytrn) (zr y) + . , . -+ Y(m + N, (Cc, y) + YtrnSN+‘) (z, y, t) + . . . (4) 

where 772 2 2 , 772 + fl = fll , fll being an arbitrarily large number. 
As already noted, the problem of the stability of system (4) in the case where consid- 

eration of the forms Xcrn) and Y(‘), suffices for its solution was investigated thoroughly 

by Kamenkov in his papers [3. 5 and SE He noted, however, that the forms Xcrn) and 
Y(m) ) like the first approximation, do not always resolve the question of stability, so 
that consideration of higher-order forms becomes necessary, In this case the stability 

problem involves exceptional difficulties which Kamenkov succeeded in overcoming in 

PO], where he formulated several general theorems on stability not only with respect 
to (m + l)-th order forms, but for higher-order forms as well. 

The application of these theorems to canonical systems enabled him to generalize the 
results of Levi-Civita and K. L. Zigel’. 

The second part of PO] deals with the stability of motion in the critical cases of p 

pairs of purely imaginary and n zero roota. Kamenkov showed that the problem of 

stability in the critical case of an arbitrary number of imaginary roots can always be 

reduced to the investigation of stability in the critical case of a multiple zero root, 
The multiplicity of the zero root and the number of associated solution groups is deter- 

mined by the character of the purely imaginary roots. If the purely imaginary roots 

f t A, satisfy the relation Cm, A, # 0 for irrational is , then by virtue of a substitu- 
tion, equivalent with respect to the stability problem, Kamenkov arrived at a system 
of $2 zero roots with p solution groups, having halved the order of the initial system. 
If only the roots f th, are such that It, = as/& (a,, 0, are integers), then, as was 

shown by Kamenkov, it is possible to obtain a system with zero roots of the same order 
Zp as the initial system, 

In PO] Kamenkov developed a new form of differential equations of perturbed motion 
in the critical case of 77, zero roots with 72 solution groups for which the construction 

of Liapunov and Chetaev functions is simplified substantially . He also formulated sta- 

bility and instability criteria for such equations. 
Paper [13], which follows this survey in the present issue, likewise concerns the stabf- 

lity of periodic motions. In it Kamenkov proved a general theorem whereby the prob- 
lem of stability of periodic motion in nonessentially singular cases can always be reduced 
to a problem of equilibrium stability. 

The theorem on the existence of the holomorphic functions Zj = zj (~1, . . . . YTZ,;~), 

periodic in 6 satisfying the system (see p. 19 of paper [13]) 

_aa:i_ +~1~ (gslYl + . . + gsn,Ynl + ys) = Pflzl + . . -i- Pfp’p i- ‘j 
s 

enabled Kamenkov to investigate the stability of motion in certain essentially singular 
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cases as well. 
2” . The investigation of stability of motion over a finite time interval reduces first 

of all to the formulation of the concept of stability which, like Liapunov’s definition, 

would express a natural quality of motion in the sense of strength and nonyielding with 

respect to the initial perturbations, but over a finite time interval only. 

This was the definition proposed by Kamenkov in his paper [8] . 
If the differential equations of perturbed motion 

Z6:’ = p,1 (l) x1 $- * 1 . f P,,(f) Z7& + X,(m. . .I xn: u (s.=l....,TQ (5) 

(where pS i are real, continuous, and bounded functions of time &, and the expansion 

of the functions & in integer positive powers of 4 begins with terms of not lower than 

the second order) are such that for a sufficiently small positive number A the quantities 

X, considered as functions of time satisfy the condition 

over the finite time interval [7& , to + T] , provided that the initial values X, of 

these functions satisfy the condition 

x (nilxlo -I- . . -1. uillxnn)‘! < .,I, dL’t II $+ I/ # 0 (h, p = 1,. . _, II) 
i=l 

then the unperturbed motion is stable during the time interval ‘F : in the contrary case 

it is unstable, i. e. 7 = 0 . 
Operating with this definition of stability, Kamenkov formulated and proved the fol- 

lowing fundamental theorems [Sj. 

Theorem 1. If the characteristic equation corresponding to a system of differen- 

tial equations of perturbed motion at 6-- tie has no multiple roots, but only negative 

roots, or complex roots with negative real parts, then the unperturbed motion is stable 

over some finite time interval 7. 

Theorem 2. If the characteristic equation has at least one positive roof or two 

positive roots with positive real parts, the unperturbed motion is not stable over a finite 

time interval, i.e. T = 0 . 

Theorem 3. If the characteristic equation has at least one zero or two purely 

imaginary roots, the rest of the roots being either negative or complex with negative 

real pan-s, then the unperturbed motion may turn out to be unstable over a finite time 

interval. 

In pro,ving these theorems Kamenkov represented the initial system (5) in the form 

TC~’ :- P,~ (/,)II + . . f psl, (f(b) .c'~ -$- A.P.~ ~,')xI -I- . -: Asp,,, (!)x,& ;- X, (~1,. . ., zn; t) 

~iZl....,?l) 

(where psi(t) = Fs~(lcJ -i- A&&l), ‘S&j(lo) = 0 and pS L ( $0) are the values of 

the functions pS i( 6) for 6 = to ) and then transformed the linear part of the system 

with constant coefficients to canonical form. 

The paper also contains a method for determining the rime interval T over which 

the motion is stable. 

The formulation of the problem of stability of motion over a finite time interval and 

the method of irs solution given by Kamenkov, turned out to he exceptionally useful in 

the solution of a number of practical problems. His paper [X] opened a whole new line 

of research on the problem of stability of motion . 
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3”. In developing the general theory of stability of motion in critical cases, Kamen- 

kov in his paper [9] came to grips with one of its most obscure aspects - that of the sta- 

bility of motion in the near-critical cases so important to the engineer. especially in 

dealing with the problems of controlled flight. 

The term “near-critical problems” refers to cases where the characteristic equation 

I)(x) -7 tk,l j; 1’ 1.1* - (‘, A,+ x // --- il 
((1) 

(A, jt yz 1, ._‘$ I?; 6,, = 0 for ?, =+ I’, 6,‘, I-- 1 for ?. = 1’) 

corresponding to a system of ordinary differential equations of perturbed motion of the 

form 2”: == PE1’T1 + . . . -t It’snl’n + sJ.?I, . . . . .rn) (‘7) 

has in addition to its negative real parts at least one root with a small positive or ncga- 

tive real part, 

Kamenkov formulated this problem of stability of motion in highly original fashion 

in his paper 193. The fact is that the existence of a root of equation (6) with a positive 

rea1 part is usually a sufficient condition for unstable motion regardless of the terms 

J&%***. XII) l It is also clear that the existence of no other roots save those with 

negative real parts guarantees the stability of unperturbed motion. These two remarka- 

ble theorems of Liapunov which form the basis of the entire theory of linear vibrations 

of mechanical systems and the stability of their motion were derived under some very 

rigid limitations as regards the initial perturbations x10, T%Of ***, xno. 
In defining the stability of motion Liapunov assumed that all 1 X,, ) can be made 

smaller than any specified number, Thus, the limiting value of the initial perturbations 

is zero. Noting the fact that under real conditions the initial perturbations may well be 

bounde~i from below, Kamenkov defined the stability of unperturbed motion in the fol- 

lowing way [9] _ 

if t!le space Xl I ~. . , Xn contains a closed region $ with the property that the per- 

turbations X~,.., , X, considered as functions of time and satisfying equations of per- 

turbed motion (7) do not go beyond this region for any values of & 2 8 o provided that 

the initial conditions X lo , . . , , x n o lie inside this region or on its boundary, then 

the unperturbed motion is stable ; otherwise it is unstable. 

The above definition of stability given by Kamenkov does not violate the physical 

significance with which Liapunov invested his definition of the stability of motion , 
Kamenkov’s definition is also close to that given by Poincart in the third m&moire of 

his monograph “On Curves Defined by Differential Equations” . 

In addition to resolving the fundamental problem of stability, Kamenkov proposed a 

method for finding the region s-- a matter of practical interest. 

In his paper Kamenkov attacked the problem of nonlinear vibrations, showing the 

profound connection between this problem and Liapunov functions. The same line of 

research was later pursued by Kamenkov in paper [ll]. 

3, Nonlinear vibrations, For the last few years of his life Kamenkov con- 

cerned himself with the problems of nonlinear oscillations. ilrnong such problems con- 

sidered in [ll] were the following : finding the conditions of existence of periodic solu- 

tions, investigation of the stability of these soIutions, determination of the form of 

vibrations and processes involved in their establishment. 

Kamenkov investigated both autOnomo~ Systems Of the type 
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i=l 

and nonautonomous systems of rhe type 
tls 

tll -- 
- h,!/, j. I_L‘Y*l (21,. ., .c,,; ?/I,. ., l/,r: 0 ;- 

(s= l...., n) 

! px,,, (S,,. ., xrt; y/1,- ., yn; q -I-. ;- ,,,,(l) -t Pf,.l (‘) -I 

2;s __ 3, 2 
5 R i- pY,, (z-1,. . ., z,,; :1/I, ., ?I,; t) i- 

+ p’Ys2 (21,. ., x1,; !/I!. .I ?/TL, . 1) -I- . -i T,,, (1) --I pQ.1 (I) + . 

Here i-1 is a small parameter ; x. Y and zS can be expressed as series in the para- 

meter 1-I whose coefficients are polynomials or arbitrary degree in x , Jj and 2, : 
x,i , J’f& are polynomials of arbitrary degree with continuous coefficients periodic in 

6 with the common period 2 U : f, i and C&i are continuous periodic functions with 

the same period 2Tr. 

In [ll] Kamenkov formulated and proved the following theorems for the above systems. 

Theorem 1 . If the system of initial equations is such that the associated equation 
2x 

[XI (I/’ cos 0, V sin 0) cos 0 -t Y1 (V cos 8, V sin 0) sin 01 df3 = 0 

has k positive roots of odd multiplicity in I/, then to each of these roots there corre- 

sponds at least one limiting cycle and each of these cycles has a corresponding periodic 

solution of this system. On the other hand, if the equation Ll( v) = 0 has positive 

real roots of even multiplicity, then the problem of the existence of periodic solutions 

corresponding to these roofs is not solved to first-order terms in /-l. 

Theorem 2 . If the system of initial equations is such that the equation Ll(I/) = 0 

corresponding to this system has a root E/= z/j of odd multiplicity equal to 2 k - 1 , 
and if CP’L~ (V) 

dV2k-d <’ for v = vi 

then the periodic vibrations corresponding to the root I/= 5 are stable : if, on the 

other hand, 

they are unstable. 

Theorem 3 . If the system of initial equations is such that Equation Ll(I/) = 0 

has a root V -= i$ of even multiplicity Zk, then the domain of existence of periodic 

solutions is unstable . Moreover, if 

d”“L, (C’) 
--<0 

dv2” 
for v -= vi 

the domain is stable with respect to external perturbations and unstable with respect to 

internal ones : if, on the other hand, 

cP”L1 (V 

dli”” 
>o for v = vi 

the domain of existence of periodic solutions is stable with respect to internal perturba- 

tions and unsrable with respect to external ones. 

Kamenkov ::hen solved similar problems for the case where the question is resolved 
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not by first-order terms. but rather by a finite number of terms in p. Me then proceeded 

to describe a method for determining the p at which and below which the indicated 

periodic solutions exist, as well as a method for constructing the periodic solutions in 

the form of series in powers of the parameter CI. He also investigated the processes of 

establishment of the resulting periodic solutions (transient processes), 
Thus, in his paper [ll] Kamenkov presented a general method for investigating vibra- 

tions in nonlinear systems based on the use of Liapunov’s functions, calling it the “me- 

thod of Liapunov functions”. This method makes it possible to find periodic solutions 

which are either analytic or nonanalytic with respect to p even in those cases where 

the system of initial equations does not become linear for p m= ci . 
In the last few years of his life Kamenkov worked on his monograph “Stability and 

Vibrations of Nonlinear Systems”in which he generalized the results obtained in the 

aforementioned papers. 
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